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Current understanding of neural processing in the auditory

cortex has been shaped by a variety of experimental approaches

in animals and humans. It remains a daunting challenge to

reconcile data as diverse as synaptic properties recorded in a

rodent brain slice and functional images of auditory cortex in a

behaving human. Nevertheless, the gaps are narrowing through

a renewed focus on humans and other primates, a continuing

interest in evidence for functional pathways, a broader

application of modern imaging techniques, a growing awareness

of cortical sensitivity to dynamic features of sounds, and an

improved understanding of auditory cortical circuitry.
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Introduction
Although for decades the cat has reigned as the dominant

species for auditory cortical research, the focus has now

clearly shifted to non-human primates. One attraction of

this shift has been the adoption of an animal model whose

auditory cortical mechanisms closely match those in

humans, particularly as researchers move beyond the pri-

marysensory areas. Recent evidence suggests that although

the subcortical auditory systems of monkeys and non-

primates are similar, there are important differences in

cortical organization [1]. Some of these apparent differ-

encesmay reflecthistoric choices inexperimental emphasis

rather than substantive differences in mechanisms, and in

any case there are many advantages of a comparative

approach to the study of the auditory cortex. Nevertheless,

the current convergence of opinion on the cortical mechan-

isms for hearing in monkeys and humans is energizing the

field and influencing experimental objectives.

Recent progress in studies of the cortical mechanisms

for hearing covers an extensive range of questions and

techniques, and is beyond the scope of this review. Here,

we therefore choose to focus particularly on recent studies

in humans and monkeys, supplemented by selected

examples from other species. Other recent reviews [2–9]

collectively provide a more balanced illustration of the

considerable progress being made in studies over a wide

range of species.

Organizational principles of the primate
auditory cortex
On the basis of anatomical and physiological character-

istics, the auditory cortex in macaque monkeys is now

thought to include: a central core region of two or three

subdivisions (including the primary auditory cortex [AI], a

rostral field, and possibly an additional rostrotemporal

field), a surrounding belt of seven or eight divisions,

and a lateral parabelt region comprised of at least two

fields [10–21]. In macaque monkeys, the core is charac-

terized by sharp frequency tuning and tonotopic organi-

zation (a topographic gradient of tuned frequencies across

the surface of the tissue). A general framework of a

tonotopic core surrounded by a belt of tissue that is less

clearly tonotopic, flanked further by auditory areas that

show no evidence of tonotopy, is likely to be shared by a

broad range of species. For example, the guinea pig

auditory cortex has recently been described as consisting

of a central core of two tonotopic fields, partially sur-

rounded by six belt areas [22].

The core of the auditory cortex in the macaque monkey is

clearly revealed by its dense immunoreactivity in layer IV

for parvalbumin (a calcium-binding protein abundant in

thalamic projection neurons). This dense layer of staining

is surrounded by a more lightly stained belt, and then

flanked in turn by a very sparsely stained parabelt

[14,15,23]. Parvalbumin immunoreactivity is also success-

ful as a selective marker of the core auditory cortex in

humans [24,25]. When the results obtained when staining

for Nissl substance, myelin, acetylcholinesterase, and

cytochrome oxidase are also considered, a convincing case

is established for a common auditory cortical arrangement

in macaque monkeys, chimpanzees and humans [26��].

The apparent homology of the auditory cortex in non-

human and human primates helps to clarify the extent to

which auditory cortical processing in non-human primates

might reasonably be extrapolated to human hearing, and

it also helps to reconcile the nomenclature adopted inde-

pendently for animal and human studies. Primary audi-

tory cortex in humans is located within the transverse

temporal (Heschel’s) gyrus, sitting on the supratemporal

plane of the superior temporal gyrus. A recent study [27]
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reports that Heschel’s gyrus contains two core fields,

partially surrounded by at least six belt fields that lie

mostly on the superior temporal gyrus (Figure 1). The

core auditory cortex in macaque monkey also lies on the

supratemporal plane, and it has sometimes been observed

that AI coincides with a small bump that is reminiscent of

Heschel’s gyrus (e.g. [14]). In the auditory cortex of

humans [28�] and other primates [18], increased stimulus

complexity is associated with increased activation

throughout the auditory cortical core and surrounding

auditory regions; however, the efficacy of tonal stimuli

is largely restricted to the core. There is also recent

evidence for a transformation of spectral and temporal

response properties between the core and belt regions of

guinea pig auditory cortex [29].

The macaque auditory cortical core, belt and parabelt

collectively occupy a vast extent of the superior tem-

poral gyrus. Surface recordings and other physiological

measures suggest that the core and ‘association’ audi-

tory cortex in humans lies within the posterior two-

thirds of this gyrus (e.g. [30]). Nevertheless, there is

evidence under some conditions for the additional

involvement of the anterior extreme of the superior

temporal gyrus in auditory processing. For example, in

macaques, new evidence suggests that this largely

unexplored area of auditory cortex may be organized

into alternating columns of ipsilateral and contralateral

inputs [31��].

Auditory cortical processing streams
Cortical mechanisms for hearing include anatomically and

functionally distributed pathways that have been inter-

preted as evidence of different streams of information

processing (for recent reviews see [1,20]). The thalamo-

cortical auditory projections in monkeys provide a basis

for hierarchical transformation, as the auditory signal is

processed sequentially through core, belt and parabelt

regions. Subsequently, the signal is distributed to multi-

modal areas of the temporal, parietal and frontal lobes. It

is noteworthy that the belt is never bypassed as informa-

tion is relayed from the core to higher brain levels.

Consistent with our expectations of a hierarchy, responses

in belt areas are to some extent transformations of the

properties of the core. Within this framework there is also

a clear basis for parallel processing. Parallel processing

begins with the parallel projection from the primary

auditory thalamus to multiple core cortical fields. It

culminates with parabelt projections within temporal

and parietal areas near the superior temporal plane,

and also to frontal lobe targets that are implicated in

visual gaze, working memory and multimodal stimulus

recognition. The physiological evidence shows that dif-

ferent fields within the same level of the processing

hierarchy (e.g. AI and the rostral field, or different lateral

belt fields) process information at least partly in parallel,

and with some specialization.

Current opinion supports the notion of two major cortical

streams, popularly known as ‘what’ and ‘where’ pathways

Figure 1
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In macaques and humans the auditory cortices lie on the superior

temporal plane, mostly within the lateral sulcus. Insets (left) highlight

these areas on a lateral view of the macaque (a) and human brain (b).

In these schematic illustrations, dashed lines indicate where overlying

parietal cortex has been ‘cut away’ to reveal the superior temporal

plane. The superior temporal gyrus (STG) lies between the superior

temporal sulcus (STS) and lateral sulcus (LS). The auditory core (darkest
shading) in human lies on the transverse gyrus (Heschl’s gyrus [HG]) and

is thought to include at least two fields: primary auditory cortex (AI)

in both species, as well as the lateroposterior (LP) area in humans and

the rostral field (R) in macaques. The direction of the tonotopic gradient

in AI is defined by high frequencies caudo-medially, and low frequencies

rostro-laterally (H and L, in white). Lighter shading marks the belt, or

secondary, fields in both species, and the lightest shading marks the

tertiary parabelt fields in macaque. Abbreviations: CS, central sulcus;

AS, arcuate sulcus. Adapted from [1,27].
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[20]. The ‘where’ (dorsal) pathway is thought to link AI

via the caudomedial belt to frontal eye field and parietal

targets that are implicated in spatial processing. The ‘what’

(ventral) pathway is thought to represent a pattern (or

object) information stream that originates in the anterior

core and belt areas and influences targets within the

temporal lobe. This what/where distinction has gained

support not only from animal studies [17,21,32,33�,34]

but also more recently in human studies [28�,35].

Despite the attractive simplicity of the dual-streams

hypothesis, there is abundant evidence for more complex-

ity. A fundamental concern is that localization and pattern

processing are not necessarily independent auditory

tasks: spatial information is one of the key factors con-

tributing to the ‘determination’ (or recognition) of sound

sources [36], and sound localization is greatly influenced

by the spectral and temporal structure of sounds. More-

over, a growing body of evidence suggests that spatial

information is carried in temporal discharge patterns and

encoded in the ensemble activity distributed throughout

auditory cortex (e.g. [37�,38]).

Recent evidence from human imaging studies [39–43] is

generally consistent with the basic dual-pathway hypoth-

esis, but reveals some caveats. On the one hand, evidence

shows that the processing of various auditory stimuli that

are thought to be representative of ‘what’ tasks (e.g. pitch,

working memory, and phonemes) predominantly activate

auditory cortex and inferior prefrontal lobe, whereas

spatial processing is associated with the activation of

posterior temporal areas, parietal cortex and superior

frontal sulcus [35]. On the other hand, the imaging studies

offer some fresh insights. For example, Zatorre and co-

workers [44��] have shown that the ‘where’ pathway

might be involved in tasks such as sensorimotor integration

and the disambiguation of overlapping sound sources, and

that spatial sensitivity is linked to spectro-temporal fea-

tures [45��]. Alain and co-workers [35] reported a signifi-

cant correlation between the temporal and parietal cortex

during pitch and localization tasks, revealing the possibility

of considerable cross-talk between the streams.

Such complexities are consistent with the detailed anat-

omy of the auditory cortex in macaque monkeys [1]. The

core fields are heavily interconnected and must influence

each other considerably, and the core regions of each

hemisphere are heavily interconnected via the corpus

callosum. The connections of the belt fields provide

the basis for considerable cross-talk within the belt,

and feedback to the core, in addition to projections to

the parabelt. Although the parabelt gets no direct input

from core auditory cortex, it does receive input from

several non-primary thalamic nuclei. Thus, auditory cor-

tex has a structural framework suited to the partial seg-

regation of processing tasks, but with the capacity at each

hierarchical level for extensive sharing of processed data.

Auditory cortical response properties
Decades of physiological investigation have provided

many details of functional topography within the auditory

cortex. The core auditory cortices (including the primary

auditory cortex [AI]) of many species are characterized by

their tonotopic organization of individual neurons that are

narrowly tuned for frequency. Although lesion data have

often been interpreted as indicating that frequency dis-

crimination does not depend on the integrity of the

frequency array, a recent study in humans suggests that

fine-grained frequency perception does indeed depend

on neuronal frequency selectivity in the cortex [46�].

Several response properties other than frequency tuning

show some degree of organization along the isofrequency

axis (e.g. [47]), but many aspects of these topographies —

including their functional interrelationships and their

generality across species — remain to be clarified. One

complication is the indirect relation between the acoustic

stimulus and some of the mapped response properties

(e.g. the relation between discharge-rate and sound pres-

sure level, or the balance of binaural excitation and

inhibition).

Evidence for the organization of response properties

within the tonotopic array is largely derived from record-

ings in the middle layers of the auditory cortex, where

responses in anaesthetized animals are most robust. Even

when researchers are not constrained by the time pressure

of characterizing responses across a large tonotopic field,

discharge properties have rarely been studied in any

detail as a function of laminar depth within a cortical

column [48]. This recording bias towards the middle

cortical layers has the consequence of obscuring the

diversity of mechanisms that are known to exist across

laminae, and gives more weight to properties expressed in

the thalamocortical input. For example, GABAergic inhi-

bitory circuits in the gerbil AI are reportedly abundant in

superficial and deep layers, but rare in the middle layers

[49]. In human [24] and macaque [14] AI, different

calcium-binding proteins are expressed by different neu-

ronal types and have different distributions throughout

the neuropil: parvalbumin and calbindin are associated

with almost complementary laminar distributions. Evi-

dence that functional maps in the cortex may arise from

subcortical organization comes from a recent study using

tract tracing and physiological mapping in the rabbit to

reveal a clear relation between thalamocortical patches

and the topography of the auditory cortical response [50].

Cortical recordings in alert animals offer the prospect of

broad sampling across layers if recording depths can be

identified with sufficient precision.

The response properties of the auditory cortex reflect

not only thalamocortical and intrinsic cortical processing

but also the accumulated transformations occurring at

lower levels of the auditory system. Although this greatly
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complicates the task of understanding cortical mechan-

isms in hearing, two recent studies show how the brain-

slice recording technique is currently being applied to

investigate auditory cortical and subcortical influences

[51�,52��]. One study focused on the evidence for intrinsic

cortical mechanisms underlying different response phe-

notypes: the postsynaptic events of two populations were

interpreted as reflecting distinct mechanisms for discern-

ing transient from stationary acoustic features [51�]. A

second study used recordings from brain slices to inves-

tigate the role of thalamocortical circuitry in transforming

responses at the auditory cortex [52��]. Stimulation of the

intact ventral division of the medial geniculate (primary

auditory thalamus) was found to initiate monosynaptic,

disynaptic and polysynaptic responses in auditory cortical

middle layers, whereas stimulation of nonprimary thala-

mus gave rise to rapid activation of cortical layer I,

followed by intracortical activity [52��].

This complex picture of excitatory and inhibitory thala-

mocortical mechanisms is not apparent under conven-

tional direct stimulation of cortical columns, but is

consistent with accumulating evidence for the consider-

able transformation of responses to certain features of

acoustic stimuli. For example, simultaneous recordings in

the cat primary auditory thalamus and AI [53�,54] reveal

extensive thalamocortical modification of tuning to spec-

tral and temporal modulation parameters, with minimal

transformation of other properties.

The approach taken to demonstrate this transformation —

documenting the linear dynamics of responses to complex

sounds in the form of ‘spectro-temporal’ receptive fields —

has been employed in numerous recent studies. The term

‘spectro-temporal’ has been widely adopted to describe

the concurrent selectivity of a neuron for the frequency

content and temporal envelope of a sound. Any spectro-

temporal envelope can be expressed as a sum of sinusoidal

envelopes, often called ‘ripples’. Characterization of a

neuron’s responses to a family of ripples therefore

permits a prediction of its sensitivity to any complex

sound. Spectro-temporal receptive fields have frequently

been generated from responses to ripples. Nevertheless,

other approaches may be preferable for characterizing

brain areas in which discharge rates are very low [29] or

for estimating spectro-temporal tuning more directly

from responses to auditory vocalizations or other arbitrary

stimuli [55]. Furthermore, non-linearities in cortical res-

ponses are often reported [51�,56�,57�,58��,59,60] and

must be considered. For example, the spectro-temporal

transfer function of a typical neuron in the ferret AI can not

be completely separated into purely temporal and purely

spectral components [59]. This is because of differences in

sensitivity to upward and downward spectral (rather than

temporal) cross-sections. It is worth noting that directional

sensitivity in AI has previously been found in response to

various forms of frequency-modulated sweeps [60].

There is a continuing interest in the use of repetitive

transients and temporal modulations of tones and noise as

tools for exploring auditory cortical function. For exam-

ple, a recent study of the auditory cortical physiology of

the marmoset employed sinusoidal modulation of ampli-

tude and frequency to investigate temporal coding [57�].
The authors concluded that dynamic acoustic features are

represented for high and low modulation frequencies by

rate and synchrony codes, respectively. Eggermont [56�]
used a battery of repetitive transient stimuli to find that

cat cortical neurons typically prefer signals such as clicks

or gamma tones. Despite differences in responsiveness to

the various test stimuli, temporal transfer functions were

often very similar, suggesting that cortical responses to a

diverse range of time-varying acoustic stimuli are shaped

by a common temporal filtering process — perhaps synap-

tic depression and facilitation. This process is probably

also one of the factors underlying the context dependence

of cortical responses to binaural stimuli that vary with

time. For example, firing rates follow slow modulations

over long time courses, providing a basis for a contrast-

gain mechanism in which adaptation enhances the repre-

sentation of dynamic events [58��].

Significant recent progress is also evident in studies of

human cortical processing of complex sounds. Consistent

with the results from animal physiological recordings,

human neuroimaging data reveal that activation within

the auditory cortex is enhanced when stimuli are spectro-

temporally complex [61]. It is also increasingly apparent

that auditory cortical subregions can be readily differen-

tiated on the basis of their spectro-temporal sensitivity.

For example, Zatorre and Belin [45��] reported that the

core auditory cortex was influenced predominantly by

temporal variation, whereas the spectral manipulations

were more effective in superior anterior temporal (belt)

areas. Combining neuroimaging and acoustic stimulation

to study the human auditory cortex, Seifritz and co-

workers [62] reported concurrent, and possibly indepen-

dent, onset and sustained patterns of activity, indicating

that the auditory system can use multiple time scales to

encode information about a single stimulus event.

Modern views of the auditory cortical discharge rate and

temporal pattern are now more consistent with those held

in other sensory systems. Although few would disagree

that auditory cortex has the capacity for encoding infor-

mation in terms of firing rate and spike timing, it has

nevertheless been widely accepted that the responses of

AI neurons are relatively weak and transient compared

with those in other primary sensory cortices. This view

has undoubtedly been influenced by the use of relatively

deep (typically barbiturate) anaesthesia in most studies of

auditory cortical physiology over several decades. Current

research in alert animals (e.g. [32,57�,58��,63,64]) reveals

a broad range of discharge rates and a variety of temporal

discharge patterns. It has been suggested that different
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tonal discharge patterns may reflect different roles in the

processing of static and dynamic acoustic signals [65].

Considerable responsiveness has also been documented

in the cat AI using an anaesthetic regime that is minimally

depressing to cortical activity [53�,54]. Even in anesthe-

tized animals, it has been shown that spike timing in the

auditory cortex carries significant information about the

location of the sound source [37�,38,66]. Maintained

firing, which is most evident in the absence of anaesthe-

sia, illustrates how information may be carried both in the

discharge rate and in the temporal component of the

discharge pattern [57�,58��].

Conclusions
Recent evidence reveals multiple interleaved stages of

auditory cortical processing that give rise to functionally

and structurally differentiated higher systems. The

response properties of neurons in the auditory system

show multiple levels of transformation, with higher levels

emphasizing the representation of dynamic features of

auditory signals. Auditory cortical research is gaining

considerable momentum from a growing body of evi-

dence that humans and non-human primates share com-

mon cortical mechanisms for hearing. This progress is

likely to accelerate because our current understanding of

cortical mechanisms for hearing now offers a more sub-

stantive basis for comparison with cortical mechanisms for

vision. A recent study [31��] illustrates this promise,

suggesting that the auditory ‘where’ pathways to parietal

and frontal cortex are perhaps better understood as com-

ponents of a multimodal (visual and auditory) system for

processing location and motion, rather than as an intrin-

sically auditory system (see also [67�]). This explanation

retains the essence of the ‘what/where’ pathway distinc-

tion, but also allows for the likely sharing of spatial

information as a component of object recognition in

the auditory cortex. It seems probable that the currently

popular hypothesis of dual independent streams will be

further refined as researchers attempt to reconcile notions

of streams that are based on functionally distinct central

pathways and streams of information derived from con-

current sound sources. The challenge is to understand

how cortical mechanisms are engaged in the fundamental

task of auditory scene analysis, in which sound sequences

derived from different sources must be segregated per-

ceptually. Evidence that the monkey AI contains ensem-

ble activity that is largely consistent with the human

psychophysics of auditory stream segregation [68] seems

certain to stimulate future research.
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